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INTERPOLATION CORRECTION FOR COLLOCATION 
SOLUTIONS OF FREDHOLM INTEGRO-DIFFERENTIAL 

EQUATIONS 

QIYA HU 

ABSTRACT. In this paper we discuss the collocation method for a large class of 
Fredholm linear integro-differential equations. It will be shown that, when a 
certain higher order interpolation operation is added to the collocation solution 
of this equation, the new approximations will, under suitable assumptions, 
admit a multiterm error expansion in even powers of the step-size h. Based on 
this expansion, ideal multilevel correction results of this collocation solution 
are obtained. 

1. INTRODUCTION 

We consider the integro-differential boundary value problem 
m 1m 

ai(t)D2u(t) - ki ki(t, s)D2u(s)ds = f(t), t c J = [0, 1], 
(1l) = i=o 

. E [{yj,iDiu(0) + -yj,m+iD2u(l)] = 0, j = 1, ..., m, 
i=o 

where m is a natural number; the function am possesses no zeros and hence may 
be assumed without loss of generality to be identically 1; (-yj,i) is a real (m, 2m) 
matrix. It will always be assumed that (1.1) possesses a unique solution u E Cm (J). 

Equation (1.1) encompasses some important particular cases frequently encoun- 
tered in physical modelling processes, and there is some literature on its numerical 
solution ([2]-[4], [6]-[8]). For example, Volk [8] discussed the superconvergence of 
the iterated Galerkin approximation to equation (1.1); the author [4] discussed the 
extrapolation for the iterated Galerkin approximation to a particular case of (1.1) 
(i.e., ai = 0 for 0 < i < m - 1). 

In the present paper we give a complete analysis of a multilevel correction method 
for the collocation solution of (1.1). This correction method depends on a certain 
higher order interpolation procedure instead of the Sloan iteration, and has obvious 
advantages over the traditional extrapolation method (see Section 2). The results 
obtained in this paper compare favourably with the corresponding results for it- 
erated Galerkin solutions of Fredholm linear integral equations of the second kind 
(compare [10]). The numerical results given in Section 5 will confirm this inference 
further. 
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2. MAIN RESULTS 

It is necessary to write (1.1) in an operator form. 
The operators K: Cm(J) C 0(J), L: Cm(J) n R-{O} 3- C(J) and L* 

Cm-i (J) nR1 R{O} -? C(J) are, respectively, defined by 

1 m 
Kg(t) j k(t, s)D2g(s)ds, t E J, 

i=o 

m m-1 
Lg(t) = E ai (t)D%g(t), L*g(t) = E ai (t)D2g(t), t E J, 

i=O i=O 

where R-l{O} describes the nullspace of the operator 

R: Cm-i(J) -Rm 

m-1 

g - (E [yj,iD2g(O) + yj,m+iD2g(l)])j=l. 
i=O 

Set Li = L + L* (=Dm) and Ki = K + L*. Equation (1.1) can be written as 

(2.1) (Li - Ki)u(t) = f (t), t E J, 

where the restriction of Ki to the domain of Ki is also denoted by the symbol Kl. 
We assume that L and Li - Ki (i.e. L - K) are continuously invertible, and K 

is compact with respect to the norfms 

11 
* 

jw, :- (g -- max {D2g 
ll ool}) O<i<m 

(these hypotheses are standard, refer to [8]). The space Woo(J) nR- R{O} is abbre- 
viated to WOO,R. 

For a given integer N > 1, introduce the mesh points t, = nh, n = 0, ..., N, with 
h = 1/N. Set en = [tn1, tn] (n = 1, ..., N). In the following we shall be concerned 
with the finite-dimensional spaces 

Sk-l)h --{v: v 1enC Pk (n= 1 and n-N) or v enPk- (2 < n < N-1)} 

and 

kh {V: V EC(J),vjencPk (n=1,...,N)}. 

We are looking for Uh E WOR satisfying Luh (or L-hi S(z ) 

N 

(2.2) (Li - Ki)uh(t) = f(t), t E U Xn, 
n=i 

where 

Xn :- {tnj tnj = (n-1I + cj)h, O = Cl < C2 < ... < Ck < Ck+l-1} 

(n = 1 and n= N) 

and 

Xn := {tnj tnj = (n-1I + cj)h, O < c' < ... < c' < 1} (2< n <N-1), 

or 

Xn = {tnj tnj = (n-1 + cj)h, 0 Cl < C2 < ... < Ck < Ck+i = 1} (1 < n < N). 
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The collocation equation (2.2), together with the boundary condition RUh = 

O, will define a unique approximation Uh E L1l{S(__)k} (orUh E Lp1{Sk?h}) 
whenever the step-size h is sufficiently small. 

Let lrh denote interpolation onto Sk_lh (or Sk?') at the collocation points {tj}k 
Then the collocation equation (2.2) can be written as 

(2.3) (L1 - 7rhKl)Uh(t) = lrhf(t), t E J 

(note that LlUh E k or LlUh E kh 

Remark 2.1. The boundary value problem (1.1) may be written directly in the form 

(L-K)u(t) = f (t), t E J, 

thus the corresponding collocation approximation uh is determined by LUh E S 1 h 

(or Liuh E Sk ) ) and 

(L - JrhK)uh(t) = 7rhf(t), t E J. 

But, when {ai I i = O(l)m - 1} do not all vanish, the calculation of uh will be 
difficult (refer to [8]). 

The iterated Galerkin method for (2.1) has been discussed in [4, 8]. If iih E 
LP1{S(O)} and uh E LE 1{SkI)h} denote the Galerkin approximations to (2.1), 
then the corresponding iterated Galerkin approximations defined by 

ui = Lj(f + Kliuh), u4 = L71(f + Kljh), 

where 

Sk-l,h ={ eEP-,-1--,} 

(i) Assume that f, ai E C2k(J) and ki E C2k(J x J). Then (see [8]) 

lul u|w, < Ch 

where C denotes a constant independent of h; 
(ii) Assume that ai= 0 (O < i < mr-1). Iff E C2P+2(J) and ki E C2P+2(J x J), 

then (see [4]) 
p 

4Uh = Dtu(t) + Cr,i(Ut t) + Rr,h(t), t E J 0 < r <in, 

i=k 

where 0 < a < m; Cr,j(u, t) are independent of h, and Cr,i(u,) C2p+2(j); 

Rr,h E C(J), and satisfy HFRr,h11 < Ch2P+2. Thus the extrapolation to D"uh can 
be done repeatedly. 

By the way, the above results are also true under the corresponding Sobolev 
smoothness assumptions like the case of Fredholm integral equations (see [6]). This 
is an advantage of Galerkin method over collocation method (compare Theorem 1). 

If we set u4 = LT1 (f + Kluh), then we can show, under the usual smoothness 
assumptions, that u possesses the same accelerated convergence properties as ui 
and Uh, provided that the collocation parameters {c } (or {cj }) are chosen as the 
k Gauss points for (0, 1) (or the k + 1 Lobatto points for [0, 1], i.e., the zeros of 
the k + 1 degree polynomial Qk+1(s) = dk-1 [S(S -_ )]k). But, for numerical 
purposes (refer to Remark 2.2) we introduce new kinds of accelerated convergence 
methods for Uh, instead of the Sloan iteration mentioned above. 
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For a natural number p > k, set N' = [2k+l]. Let J be divided into N' subin- 

tervals {ur} such that ar (r = 1, ..., N' - 1) contains 2p + 2 points of {t,} (i.e. 

r= [t(2p+1)(r-l)it(2p+1)r])D and UN' contains q points of {tn} (q = kN + 1- 
(N'-1)(2p+1)>2p+2). Set 

S(p,N) :=-{v: v E C(J),v 1KrE P2p+l (r = 1,...,N'-1) and v IIN//E Pql1}, 

let 7rh denote interpolation onto S(p, N) at the points {tn}. Besides, set N" = 

k2N+1], and let J be divided into N" subintervals {vi I i = 1(1)N"} (`i is denoted 
by [si-1, si]) such that vj (i = 1, ..., N" - 1) contains 2p + 2 points of {tnj}, and 
ON" contains q' points of {tnj} (q' = kN + 2 - (N" - 1)(2p + 1) > 2p + 2), 
where so = to; si (i = 1, ..., N" - 1) is chosen as one of the collocation points 

{tnj}; SN" =tN. Set 

S(p, N) {v v E C(J), v |octE P2p+1 (i = 1, ..., N" -1) and v I5NIIE Pq'-i}, 

and let Th denote interpolation onto S(p, N) at the points {tnj} 
In the following discussions, uh denotes the collocation approximations defined 

by (2.2); the collocation parameters {cj} ({c[2}) are given by the k + 1 Lobatto 
points for [0, 1] (k Gauss points for (0, 1)). 

Theorem 1. Let the functions f, ai and ki in (1.1) satisfy f, ai E C2P+2 (J), ki E 
C2P+2(J x J). 

(i) Assume that {ai I i = O(l)m - 1} do not all vanish. Let Uh E Cl (S(?) . 
Then 
(2.4) 

p 

WhDrUh(t) -Dru(t) + S Cr,i(t)h2i + Rr,h(t), t E J, 0 < r < m, 
i=k 

where all Cr,i(t) are independent of h, and Cr,i E C2P+2-2i(J);Rr,h(t) satisfy 

j1Rr,h loo < Ch2T+2. 

(ii) If ai 0 O (i = 0, ..., m - 1), and Uh E L1 (S-l) h), then 

(2.5) 
P 

7lhDrUh(t) = Dru(t) + Cr,ji(t)h2i + Rr,h(t), t E J, 0 ? r < m-1 
i=k 

and 
p 

(2.6) 7FhDmUh(t) = Dmu(t) + E Cm,i(t)h2i + Rm,h(t), t E J. 
i=k 

Remark 2.2. Theorem 1 indicates that the higher order interpolation for DrUh 

possesses the same convergence behaviours and "acceleration effect" as the iterated 

collocation (or Galerkin) approximation for (1.1). The advantage of our method is 

that computing the higher order interpolation for DrUh is cheaper than to compute 
the corresponding iterated collocation (or Galerkin) approximnation, because for 
the computation of this "iterated approximation" double integrals containing the 

Green's function of L1 need to be calculated. By the way, this theorem implies 
that the collocation approximation itself admits a fine error expansion at the knots. 

Thus, if the approximate solution of (1.1) is evaluated only for some mesh points, 
then neither the Sloan iteration nor the higher order interpolation operation need 

to be used. 
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Now we introduce a multilevel correction method. 
The sequence of collocation operators Qh Cm(J) -3 L 1(Sk_i)h) (or L1 (S(O?)) 

is defined as follows: for v E Cm (J), Qhv is the unique solution of equation (h is 
sufficiently small) 

(Li - 7FhKl)QhV = 7Fhfv, 

where f, = (L1 - Kl)v. 

Theorem 2. Let the furnctions f, ai and ki in (1.1) satisfy f, ai E C2k(r+l) (J), ki E 
C2k(r+1)(JXJ), where r E N. 

(i) Assume that {ai I i = 0(1)m - 1} do not all vanish. Let Uh E L1 (S(O)). 
Then we have the multilevel correction estimates 

(2.7) H|Uh,r - u11wzm < Ch2k(r+l) 

where Uh,r = (-1)r : (-i)jCrj+1(L 7l1hDnQh)r 3L1 lrhDmuh, with p = 
j=O 

k(r + 1) -1. 

(ii) If ai 0 (i = 0,..., m -1), arid uh E LT1 1)h) then 

(2.8) I|uh,r - U|Hw m < Ch2k(r?l) 

where Uh,r = (-1)r I: (-l)iCj+l (Lp1hDmQh)r-jLpl1ihDmuh, with p = 
j=O 

k(r + 1)-1. 

The approximations Uh,r and uh,r are called the rth-level corrected solutions of 
(1.1). 

Remark 2.3. Since the Green's function of the differential operator L1 is a piecewise 
polynomial, the rth-level corrected approximations Uh,r and Uh,r can be computed 
analytically. In most applications, k may be chosen as k = 1 or k = 2. When 
k = 1, tho global convergence order of Uh,2 and Uh,2 will be 6; when k = 2, the 
global convergence order of Uh,1 and Uh,1 will be 8. 

Remark 2.4. Using Theorem 1 we can also obtain multilevel extrapolation results 
(refer to [3]). But the calculations of the rth-level extrapolated approximation are 
heavier than ones of the rth-level corrected approximation, because we have to 
increase the number of the knots as many as two times whenever we apply the ex- 
trapolation procedure; moreover, the global accuracy of this rth-level extrapolated 
approximation is only O(h2k+2r), which is much lower than that of the rth-level 
corrected approximation unless k = 1 (compare (2.7) or (2.8)). 

Remark 2.5. In particular, Theorem 2 is true for the case of differential boundary 
value problems (i.e. ki- 0, i = 0,...,m). It extends the superconvergence results 
obtained by de Boor [1]. This is also an advantage of the collocation method over 
the Galerkin method, since there isn't a multilevel extrapolation (or correction) 
estimate of the Galerkin approximation to two-point boundary value problems. 
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3. LEMMAS 

Lemma 1. Let e := Uh - u denote the error function. Then e satisfies the identity 
relation 

(3.1) e = Z(KhL*)iKhLlu + (KhL*)k'+le, 
i=O 

where 
A A 

Kh = L-1 : Mhj + L-1(1rh-I ) (I+ Z Mhj) 
j=1 j=1 

+ L- 1rh(I - KLlrh) -lKL (lrh - I)Mh\, 

with Mh = (I-KL-1)-1 KL-1 (rh -I); A and p are natural numbers (to be deter- 

mined). 

Proof. Subtraction of (2.1) from (2.3) leads to 

(3.2) L1e = JrhKle + (1rh - I)(Klu + f). 

Noting that K1u + f = L1u, L1 = L + L* and K1 = K + K*, (3.9) may be written 

in the form 

(3.3) e = L-1rhKe + L-1(rh - I)(Llu + L*e). 

On the other hand, from (3.3) we have (since I - KL-1rh has continuous inverse 

for sufficiently small h) 

(3.4) Ke = (I - KL, 1rh)1 KL-1 (1rh - I)(Llu + L*e). 

Thus, if we substitute (3.4) into (3.3), then we obtain 

e = L-11rh(I - KLlrh)-1KL- (Frh - I)(Llu + L*e) 

+ L-1 (lrh - I)(Llu + L*e). 

Using the following identity relation repeatedly 

(I-KL,Wrh)-1KL-1 = (I-KL-1)-1+(I-KL,7rh)-1KL-1(lrh-I)(I-KL-)-<1, 

expression (3.5) yields that 

A 

e = L-11rh[Z Mh + (I- KLlrh)-1KL-(lrh - I)Mhf](Llu + L*e) 
j=1 

+ L-1(rh - I)(Llu + L*e), 

namely 

(3.6) e = KhLlu + KhL*e. 

Furthermore, from (3.6) we have 

e = KhLlu + KhL*KhL,u + (KhL*)e. 

Successively, we can deduce (3.1). 

The following result is standard (refer to [4], [8]). 

Lemma 2. There exists a positive number E such that 

(3.7) 1(I - KL-17rh)-<11C(J),C(J) < C, h <?. 
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The following lemma can be proved as in [5] Lemma 5 (note that Q + 1 (s) is just 
the shifted Legendre polynomial Lk(2s - 1)). 

Lemma 3. Let q > m. If S C 02q?2(J), / c C2q?2k(J), then the following 
expansions are valid for all en 

(3.8) 
q 2j 

j (rh- I)p * ,odt - h2i , Cij D2 -i(DU,o * V)dt + 0(h2q?3) 

j=k i=k n 

(3.9) 

j D' (7rh - I) *p *dt 
en 

Ce2 2j+r 

= ZC o E h2i E Cijr D2j+r-i (Di+a-r(p o O)dt 
r=1 j=cl i=k en 

Ce 2 2j 

+ h 23 CL Cj D2j-i(D'+. b)dt + o(h2C2+3), 

j=k i=k en 

where 1 < a < k, a1 = [i? ]Xa2 = [q -]; Cij,Cijr are constants independent 
of h. 

Now, we introduce a new concept. 
A sequence of functions Gh is said to be "expansible" if there are functions Gji 

and Grji independent of h such that the following integral expansions are valid for 
all en and k E C2q+2-k(J): 

q 2j-k 

(3.10) ] k(t)Gh(t)dt = h2j E J Gji (t).D2k(t)dt + O(h2q+3), 
en j=k i=O e 

(3.11) 
r r2 r3 

] k(t)*DrGh(t)dt = h2E J Grji(t)eD2k(t)dt + O(h2r2+3) 
j=rl i=o e 

Here k < q < p, Gji e C2( +2i(J), Grji E C2 +22ir(J); 1 < r < 2q,,rl 
max{0, [k+l-r]}, r2 = [q-- r],r3 = 2j +r-k. 

Set Q1 := {(t, s): 0 < s < t < 1} and Q2 {(t, s): 0 < t < s < 1}. 

Lemma 4. Assume that Gh is "expansible". Then (7rh -I)Gh is also "expansible", 

ft Ri(t, s)Gh(s)ds is "expansible" for R1 c C2P+2(Q1) and ft R2(t, s)Gh(s)ds is 
"expansible" for R2 E C2P+2 (Q2) 

Proof. It is obvious that (7rh - I)Gh is "expansible" (using Lemma 3 and (3.11)). 
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Let k E C2q+2-k(J). By (3.10), there are functions Gji independent of h such 
that 

r t 
[k(t) j R(t) j R(ts)Gh(s)ds]dt 

en O 

r tn-1 

(3.1= j[k(t) j Ri(t, s)Gh(s)ds]dt 
eno 

(3.12) t 

+ |[k(t) | R, (t, s) Gh (s) ds] dt 
n tn - 1 

q 2j-k tn-1 

Zh2i 2E | [k(t) j Gji(s)&sR1(t,s)ds]dt+In(t)I 
j=k i=O en 

where Gji e C2q+2-2i(J). 
On the other hand, changing the order of integration and using (3.10), we obtain 

r tn 

In (t) = J J k(t)R, (t, s)dteGh(s)]ds 

= S h2i E f[Gji(s)&asf k(t)R1(t, s)dt]ds 
j=k j=0 Ie Js 

(3.13) q 2j--k tn 

= h2i E 
f[Gji(s) /as&R, (t, s)k(t)dt]ds 

j=k i=o t JS 

q 2j-k-1 

+ E h2i J Gji(s)D2k(s)ds, 
j=k i=O en 

where Gji e C2 V?2-2i(J) 
Changing the order of integration once again yields that 

(3.14) 

j [Gji (s) j &R, (t, s)k(t)dt]ds = j [k(t) Gji (s)'R, (t, s)ds]dt. 
en S n t-1 

From (3.12), (3.13) and (3.14), we know that fotRi(t, s)Gh(s)ds satisfies (3.10). 

Analogously, we can show that f0 Rj (t, s)Gh(s)ds satisfies (3.11), and 

ft7 R2(t, s)Gh(s)ds satisfies (3.10), (3.11). Thus, both fg R1(t, s)Gh(s)ds and 

ft R2 (t, s)Gh(s)ds are "expansible" . 

Lemma 5 ([6]). Iff, ai e C2P+2(J) andk2 e C2Pk2(JxJ), thenu e C2P?2?m(J). 

Set 

Ah =J-1 (Z Mj), Bh =L-1(7rh-I)(I+ EMMh) 
j=1 j=1 

Cr,h = (AhL* + BhL*)r-1 (Ah + Bh). 
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Lemma 6. Assume that the smoothness assumptions stated in Lemma 5 hold. If 

g E C2P+ (J), then 

(3.15) 
p 

DaAhL*Cr,hg(t) = ZCa,r,i,l(t)h2i + Ro, r,h,1 (t), t C J, 0 < a < m, 
i=k 

(3.16) 
p 

DaBhL*Cr, h9(t) ZCc,r,i,2(t)h2i + Rc<,r,h,2(t), t c {t}, o < a < m-1 
i=k 

where all Ca,r, 1j (t) are independent of h, Ca,,r,i,l E C2P+2 (J) and Ca,r,i,2 C 

C2p+2-2i(J); Ra,r,h,j E C(J) and satisfy ||Ra,r,h,j|Ioo < Ch2p+2 (j = 1,2). 

Proof. Lemma 3 implies that (7rh - I)g is "expansible". Let G(t, s) denote the 
Green's function of the differential operator L, then G E C2P+2(Ql)nC2P+2(Q2). 
Thus, the inductive method, together with Lemma 4, infers that L*Ah and 

A-1 

L*Bh are "expansible". Furthermore, we know that L-1 (7rh - I) MhL*Cr,hg 
j=l 

A 
and (7rh - I)(I + E Mh)L*Cr,hg are "expansible". Noting that the operator 

j=1 

L-1(1 - KL-1)-1 C2p+2(J)___C2p+2+m(J) is independent of h, (3.10) implies 
this lemma. El 

The following lemma can be verified by [5] Lemma 1-Lemma 4 (refer to the 
proofs of Lemma 4). 

Lemma 7. Under the conditions of Lemma 5, we have 

(3.17) ||KL1(1rh - I)|IC2k(J)>C2k(J) < Ch2. 

4. PROOFS OF THE MAIN RESULTS 

Proof of Theorem 1. (i) Using (3.2) we obtain (Lemma 5 implies Llu C C2P+2(J)) 

jejjwrn < JI(L1- 7rhKl) -1jC(J),Cm(J) * 11(7rh- I)Llulloo 
< Chk. 

Thus, for 0 < a < m, we have 

IIDa(KhL*)?+leIK ? I<(KhL*)?+leItw_ 
K IlKhL*HllWml jWm*ejjwm 
K Ch,l?+ 

If we set p= 2p + 1 - k, then 

(4.1) jDa(KhL*)?+leIIoo < Ch2 I2 0 < a < m. 

On the other hand, (KhL*)zKh can be written as 

(4.2) (KhL*)iKh = (AhL* + BhL*)i(Ah + Bh) + Kh, 

where K* denotes the term containing the factor 

L-1rh(I - KL-17rh)-KL-(rh - I)Mh\. 
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Let the natural number A be chosen as A = [P+l]. Then (by (3.17)) 

IL-17rh(I - KL-17rh)-1KL-1(7rh - I)Mh ||C2k(J),Cm(J) 

?< IL-17rhIIc(J),cm(J) * I(I - KL-17wh)1c(J)c(J) 

(4.3) * IKL-1(7h - I)H|C2k(J),C(J) * 
IIMhIIC2k(J)yc2k(J) 

KCh2k(A+?) = Ch2P+2 

Now we consider D'(AhL* + BhL*)r(Ah + Bh), here 0 < a < m, 0 <r < ,u. 
Without loss of generality, we assume that r > 1, thus 

(4.4) Da(AhL* + BhL*)r(Ah + Bh) = DaAhL*Cr,h + DaBhL*Cr,h, 

Since 
DmBhL*Cr,h =(L* + L)BhL*Cr,h 

A 

=L*BhL*Cr,h + (whh-I)(I + E Mh)L*Cr,hi 
j=1 

and 7h(wh - I) = 0, thus we have 

7rhDmBhL*Cr,h = 7rhL*BhL*Cr,h. 

By (3.15), (3.16) and (4.4), this leads to 

(4.5) 
7rhDa(AhL* + BhL* )r (At + Bh)g(t) = 7rhDa(AhL* + BhL*)Cr,hg(t) 

p 

- rh C ar j( +7rhRcx r,h(t) , O<a<m, t E J, 
j=k 

where 0 < r < ,t; g E C2P+2(J); C,c,r,j(t) are independent of h, and C,,,r,j E 

C2P+2-2i (J); Ra,r,h E C J), and IIRa,r,hIIHoo < Ch2P+2. 
Using (3.1), together with (4.1), (4.2), (4.3) and (4.5), yields that (note that 

(rqh-I)Co,r,j II oo < Ch2p?22 ) 
p 

(4.6) 7rhDre(t) = E Cr,j(t)h2J +Rr,h(t), 

j=k 

where Rr,h E C(J) satisfies IIRr,hIIoo < Ch2P+2. 
Noting that 

'lhD Uh -DrU = hDre + (7h - I)Dru 
and 

1(rh - I) DrUloo < Ch2p2 
using (4.6), we readily deduce (2.4). 

(ii) can be derived in an analogous way. (For this particular case, (3.1) becomes 

e = KhL1u. Moreover, we have DmBh = (7rh - I)(I + , Mh) and 'hC7rh - I) = 0. 
j=1 

Besides, we need to use an obvious expansion of MhjLiu.) D 

Proof of Theorem 2. (i) Set Th = 7rhDmQhLi - I. The expansion (2.7) may be 
written in the form 

p 
ThDmU = h2iCi + Rh, 

j=k 
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where p = k(r + 1) - 1; the functions Cm,i(t) and Rm,h(t) are, respectively, abbre- 
viated to Ci and Rh. Thus 

p 

(4.7) ThDmu = h h2iT,C. + ThRh. 

i=k 

Note that L 1Ci and QhL71Ci can be regarded, respectively, as the exact solu- 
tion and collocation solution of the following auxiliary integro-differential boundary 
value problem 

(L1 - Ki)v = fi, 
with fi = (L1 - KI)L71Ci. Thus, when u and uh are, respectively, replaced by 
L71Ci and QhL71Ci, expansion (2.7) will still be valid. 

Let 2p+2-2i > 2k (i.e. i <p+1-k). Then 
p-i 

(4.8) ThCi = E h2jC?,j + Ri,h, 
j=k 

where C,,j C2P+2-27-2i(J); 2Ri,h ? P-i)+2 

If 2p+2-2i < 2k (i.e. i >p+l -k), then we have 

(4.9) IlThCilloo < Ch2p+2-2i |CiI I2p+2-2i,oo- 

Thus, if we substitute (4.8) and (4.9) into (4.7), then 
p 

T2Dmu = E h2 Cr, + Rhi, 
r=2k 

where Cri = Z Ci,j E C2P+2-2r(J); IIRh,1Iloo < Ch2p+2. 
j+i=r 

Successively, we obtain 

(4.10) IIThr+lDmuIIoo < Ch2P+2 C Ch2k(r?l) 

On the other hand, we have (note that Qhu = Uh) 

Tr+lDmu =(QFhDmQhL;l _ I)r+lDmu 

r 

= Z(f-4)i Crj+ I (7rhDm QhLl l)r i jhDmuh- (_1)rDrnu 
j=O 

=(_ )rDmn(Uh,r - U), 

and by (4.10), this leads to (2.7). 
(ii) (2.8) can be deduced in the same way (using (2.6)). 

Remark 4.1. The interpolation correction technique introduced in this paper is also 
suitable for integro-differential equations with other kinds of boundary conditions. 
For example, it is fit for integro-differential boundary value problems generated by 
the regularization method for the first kind FRedholm integral equations (refer to 
[9]). 

Remark 4.2. When the integrals appearing in the collocation equation (2.2) cannot 
be evaluated analytically, the fully discretized form of (2.2) will be obtained by ap- 
proximating these integrals by product integration techniques. It can be verified by 
using our method that the corresponding approximation has the same asymptotic 
properties as Uh, provided we select the Gauss-type quadrature weights. 
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5. NUMERICAL EXAMPLES 

To illustrate the theoretical results stated in Section 2 and compare them with 
the corresponding results given in [10], we consider the examples: 

Example 1. 

u"(t) -p(t)u(t) + 2 Co f s (t - s)u(s)ds = f(t), t E [0, 1], 

{u(0) - 2u(1) = 0, u'(0) = 0, 

with f (t) chosen so that u(t) = cos Z t (p(t) 0 , f (t) - cos 7 (1-t) or p(t)_ 

f (t = 7sin 6 (I 1-2t) . 

The numerical results are obtained with k = 1 (C1 = 0, C2 = 1, cl = 2) and with 
1 /=3 -V v/ 3 __3_ k = 2 (c, = 0, C2 = 2, C3 = 1, Cl = 6 ,c2 _ 

363). The multilevel correction 
estimate (2.8) is confirmed by Table 1, and (2.7) is confirmed by Table 2. 

Example 2. 

u(t) -2 jocos 7r(t -s)u(s)ds =f (t), t E [0, 1]) 

with f(t) chosen as f(t) = c- s t so that u(t) = cos 7-t. 

Let uhS [ S(-)h be the Galerkin approximation to this equation, and iih,r denote 
the corresponding rth-level iterated corrected approximations (see [10]). The error 
estimates are given in Table 3. 

The numerical results confirm our inference. 

TABLE 1 

k = 1 k = 2 

N11iuh,2 - ujjO rates N|Uh,1 - ulkc rates 

10 12.58D-6 { 

20 4.18D-8 1596 1513.27D-81 
40 16.91D-10 15.93 30|1.33D-10 17.93 

TABLE 2 

k=1 k=2 

MIJUh,2 - Uj| rates N|lluh,l - ujH rates 
10 13.01D-61 

2014.87D-8 5.95 1514.34D-81 
40 7.94D-10 15.91 301.77D-10 17.92 

TABLE 3 

k=1 k=2 

Njjiih,2 - ulll rates NIIiUh,l - UjjI rates 
10 12.74D-6 { 

20 14.53D-8 1594 1513.81D-81 
40 17.38D-10 15.92 3011.64D-10 17.91 
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